
LLNL-CONF-653312

A Study on Balancing Parallelism, Data
Locality, and Recomputation in Existing
PDE Solvers

C. Olschanowsky, M. Strout, S. Guzik, J. Loffeld,
J. Hittinger

April 17, 2014

Super Computing
Denver, CO, United States
November 17, 2013 through November 22, 2013



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



A Study on Balancing Parallelism, Data Locality,
and Recomputation in Existing PDE Solvers

Catherine Olschanowsky
and Michelle Mills Strout

Computer Science
Colorado State University

Stephen Guzik
Mechanical Engineering

Colorado State University

John Loffeld
and Jeffrey Hittinger

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Abstract—Large-scale, PDE-based scientific applications are
commonly parallelized across large compute resources using
MPI. However, the compute power of the resource as a whole
can only be utilized if each multicore node is fully utilized.
Currently, many PDE solver frameworks parallelize over boxes,
which ares rectangular domains of cells or faces in a structured
grid. In the Chombo framework, the box sizes are typically 163

or 323, but larger box sizes such as 1283 would result in less
surface area and therefore less storage, copying, and/or ghost cells
communication overhead. Unfortunately, typical on node parallel
scaling involving shared memory parallelization over boxes or
parallelization over cells within boxes performs quite poorly for
these larger box sizes. In this paper, we investigate 30 different
inter-loop optimization strategies and demonstrate the parallel
scaling advantages of some of these variants on NUMA multicore
nodes. Shifted, fused, and communication-avoiding variants for
1283 boxes result in close to ideal parallel scaling and come close
to matching the performance of 163 boxes on three different
multicore systems for a benchmark that is a proxy for program
idioms found in many Computational Fluid Dynamic (CFD)
codes.

I. INTRODUCTION

Large-scale, structured-grid, PDE based scientific applica-
tions are commonly parallelized across nodes in large compute
resources using MPI. Each MPI process operates on a set of
boxes, where each box is a rectangular section of a structured
grid. Since larger box sizes result in fewer ghost cells, the MPI
parallelization prefers larger box sizes. Unfortunately, within
a shared-memory, multicore node, straight-forward paralleliza-
tions involving parallelization over or within large boxes do not
scale to the number of available cores. Since the number of
cores per node grows in each new generation of machines,
this limitation presents a significant issue for CFD codes
in particular and all structured PDE codes in general. In
this study, we present the advantages of applying inter-loop
optimizations on structured CFD codes to improve on node
parallel scaling for large boxes.

CFD codes consist of an outer time stepping loop, and,
at each time step, various stencil computations are performed
on the faces and cells within a structured grid. Two main
performance bottlenecks are (1) the ghost cell updates that
occur each time step and (2) the stencil computations.

The number of ghost cells is a function of the stencil width.
A modern trend is to use at least a fourth-order algorithm
(the error is O(∆x4) in (2)). Fourth-order and higher schemes
have the advantage of increasing the solution accuracy per unit

16 32 64 128
1

2

3

4

3D, 2 ghost

3D, 5 ghost4D, 2 ghost

4D, 5 ghost

Box size (dimension of hyper-cube)

To
ta

l
ce

lls
Ph

ys
ic

al
ce

lls

Fig. 1. Ratio of total cells to physical cells as a function of box size. A
smaller ratio will result in the reduction of ghost cell overhead.

computer memory. However, a minimum of two ghost cells are
required and up to five to accommodate non-linear stabilization
mechanisms [32] and mapped grids [22]. For small boxes, the
number of ghost cells can dominate the memory used. Figure 1
illustrates the ratio of total cells to physical cells for various
problem dimensions and numbers of ghost cells. This is simply

a plot of ratio =
(

1− 2nghost

ncell

)D
, where D is the number of

space dimensions and ncell is the number of cells in a single
dimension of a box (assuming equal dimensions). A ratio of
1 means all the cells are physical cells. A ratio of 2 means
that one has to exchange an amount of data equivalent to the
physical solution domain to fill all the ghost cells. With 5
ghosts, a box size of 64 is necessary to get the ratio below 2.
A box size of 128 is even more attractive to minimize memory
wasted, especially in higher dimension (up to 6 can be used
for kinetic calculations in phase space).

There are a number of optimizations such as communi-
cation hiding through communication and computation over-
lap [39] that can be used to reduce the cost of the ghost cell
updates. In this work, we focus on the goal of moving to
larger box sizes so as to reduce the cost of ghost cell updates
no matter how the ghost cell updates are implemented.

In this paper, we focus on developing parallel implemen-
tations of stencil computations on large boxes that scale on
multicore architectures. One option is to use MPI everywhere;



1 2 4 8 16 24

0.5

1

2

4

8

16

Thread Count

E
xe

cu
tio

n
Ti

m
e

(s
)

Performance on 24-Core AMD Magny-Cours

Baseline: P≥Box, N=128
?Shift-Fuse OT-16: P≥Box, N=128
Baseline: P≥Box, N=16
Shift-Fuse: P≥Box, N=16

Fig. 2. On the Cray, the baseline, which is a parallelization over boxes (P ≥
Box) results in poor on node scaling. A variant that performs loop shifting,
fusion, and overlapped tiles of size 163 results in on node performance that
matches that of the smallest box size. Additionally, the smallest box size
of N = 16 scales just fine with a parallelization over boxes, but using a
shifted and fused version of the computation another 16% improvement in
the execution time is realized at 24 threads.

1 2 4 8 16 20 40

0.25

0.5

1

2

4

HT→
Thread Count

E
xe

cu
tio

n
Ti

m
e

(s
)

Performance on 20-Core Intel Ivy Bridge

Baseline: P≥Box, N=128
?Shift-Fuse OT-8: P<Box, N=128
Baseline: P≥Box, N=16
Shift-Fuse: P≥Box, N=16

Fig. 3. On the Ivy Bridge, the N = 128 box size is still 2 times slower than
the same amount of work parallelized with N = 16 box sizes, but a shifted,
fused, and overlapped tiling with tile size of 83 variant does fix the parallel
scaling.

a parallelization over boxes would then assign a set boxes
per core on each node in the machine. As motivation, we
approximate the impact of this approach on a multicore node
using OpenMP and show results for box sizes of 163 and 1283

in Figures 2, 3, and 4 (see the solid lines). The desired
larger box size 1283 exhibits poor parallel scaling within the
multicore machines. The dashed line in Figures 2, 3, and 4
illustrate a shifted, fused, and overlapped inter-loop scheduling
strategy that fixes the parallel scaling problem for the larger
box sizes.

The primary contribution of this paper is to identify which

1 2 4 8 12 16

0.25

0.5

1

2

4

Thread Count

E
xe

cu
tio

n
Ti

m
e

(s
)

Performance on 16-Core Intel Sandy Bridge

Baseline: P≥Box, N=128
?Shift-Fuse OT-16: P<Box, N=128
Baseline: P≥Box, N=16
Shift-Fuse: P≥Box, N=16

Fig. 4. On a Sandy Bridge, a shifted, fused, and overlapped tiling with tile
size of 163 variant enables the N = 128 box size performance to match that
of N = 16. Also a shifted and fused variant with no tiling improves on the
N = 16 baseline.

of approximately 30 inter-loop parallelization scheduling vari-
ants results in this improved performance for three machines
and to explain why. Although recent work has automated the
application of certain inter-loop optimizations [50], [36], [5],
the optimization strategies presented here are different, and the
code complexity will make automating the approaches some-
what more difficult. Prototyping the strategies to determine
their impact is an important first step in determining which
strategies to automate.

Even prototyping these optimization strategies by hand
within a benchmark code that uses an existing applica-
tion framework is non-trivial. The CFD-motivated bench-
mark, which is detailed in Section III, is written using the
Chombo [12] application framework. The well-established
program idioms in Chombo result in clean, modular code that
is both maintainable and displays excellent inter-node parallel
scaling performance. However, these common program idioms
do not ease the implementation of inter-loop optimization
strategies that require the introduction of complex loop bounds,
the careful management of temporary storage, and attention to
details such as common subexpression elimination in array
addressing arithmetic. To ease the process of developing so
many variants for this study, we use CodeGen+ [8] to generate
the complex loop bounds.

In Section II, we review some of the basics in CFD
computations and abstractions such as the box that are used
in application frameworks such as Chombo. In Sections III
and IV, we present the CFD-motivated benchmark, the ap-
proximately 30 shared-memory variants of that benchmark,
and how we are able to leverage a polyhedral code generation
tool to implement the variants. In Section V, we describe how
these variants differ from stencil computation optimizations
in related work. In Section VI, we detail results from key
categories of the variants. In Section VII, we conclude.



II. PDE APPLICATION FRAMEWORKS

Computational approaches are used to solve partial dif-
ferential equations when the analytic solutions to them are
not known. The partial differential equations often describe
some conservation law in physics. For example, the Navier-
Stokes equations describe conservation of mass, momentum,
and energy in a fluid flow. These equations can generally be
written in the form

∂U
∂t

+ ∇ · ~F(U) = 0 , (1)

where U is a vector of unknowns (.e.g, density, momentum,
and energy), ~F(U) is the flux dyad (tensor with components for
each direction), t is time, and ∇ is the differential operator
in space. To solve (1) numerically, it is approximated by a
sequence of algebraic equations that are solved at discrete
locations defined by a grid covering the spatial domain.

If (1) is approximated by point-wise values on the grid,
the method is described as finite-difference. For example, using
Taylor-series expansions,

df

dx

∣∣∣∣
i

=
fi+1 − fi−1

2∆x
+O(∆x2) , (2)

where fi ≡ f(xi) and i denotes a discrete location on the grid
(in one dimension). The term O(∆x2) is the discretization
(or truncation) error induced by approximating the continuous
differential equation with a discrete algebraic form. It is a
function of the spacing of the grid and, being raised to the
power of two, we would expect a quadratic decrease in the
discretization error as the grid spacing is reduced. This would
be labeled a second-order method. Note also that (2) has a
stencil of size 1: the quantity f is required from grid points
i± 1∆x to compute df

dx at i.

Equation (1) could alternatively be integrated over a small
control volume, Vi, defined by the grid, i.e.,

∂

∂t

∫
Vi

U dx+

∫
Vi

∇ · ~F dx = 0 . (3)

Applying the divergence theorem of Gauss results in

∂

∂t

∫
Vi

U dx+

∫
∂Vi

~F · n̂dS = 0 , (4)

where the integral of ∇·~F over the control volume is converted
into an integral of the normal component of ~F over the surface

i

Fx Fx

Fy

Fy

Control
Volume
for U

Fig. 5. Cell values
affect flux across faces
and vice versa.

of the control volume (n̂ is a unit nor-
mal pointing outwards from the vol-
ume). The physical description of (4)
is that the change of U in time equals
the net balance of ~F passing through
the surfaces during that time. For ex-
ample, the change in density equals
the mass flux in or out of the con-
trol volume. Discretizations based on
(4) are labeled finite-volume meth-
ods. Discretization involves finding
approximations to ~F on the faces of the
control volumes based on the solution
in nearby cells as shown in Figure 5.

As with finite-difference methods, the discretization imposes

a truncation error and implies a stencil width. An advantage
of finite-volume methods is a local conservation property that
ensures discrete conservation over the entire domain, just as
in the original partial differential equations.

Much of the work in solving PDEs then involves iterating
over the cells in a grid and evaluating the algebraic equations
created from the discretization. In structured grids, the solution
content is stored in a multidimensional array. Large domains
are partitioned into many smaller pieces so that the calculations
can be performed in parallel. We call the partitions boxes.
Layers of ghost cells are added around the boxes so that
computations on the boxes can be performed independently.
Before stencil computations begin, the ghost cells are filled
with information from the physical cells sharing the same
location. Outside the domain, boundary conditions may be
used to set the ghost cells. The boxes are the coarsest grain
of parallelism and are spread across nodes in a distributed
environment.

Many application frameworks have been developed to
ease the implementation of large-scale, complex, PDE-based
simulation codes. We consider one classic varient of such
frameworks: those based on structured, logically-rectangular
meshes. Such meshes are typically used with finite difference
and finite volume discretizations and have the advantage that
data associativity is embedded implicitly within the regu-
lar multidimensional array access patterns. The fundamental
building block is a logically rectangular patch or box. Ex-
amples include Chombo [12], SAMRAI [26], BoxLib [19],
GrACE [44], Cactus [20], AMROC [15], AMRClaw [43],
Unitah [31], and Overture [24].

Advanced structured grid frameworks encode many of the
common operations associated with mesh and data manage-
ment as well as support for solvers specific to the composite
mesh structure. Examples include inter-patch interpolation
routines, mesh refinement algorithms, and overset hole cut-
ting algorithms. Support for at least distributed parallel data
management and operations is also generally provided. Thus,
the developer can re-use many PDE solution techniques based
on serial, single-grid algorithms and can leverage utilities to
construct the composite solution while letting the framework
handle the parallel data management.

As an exemplar of this class of application frameworks, we
consider the block-structured adaptive mesh refinement frame-
work Chombo [12]. Like many of the examples [26], [44],
[19], [15], [43], [31], Chombo supports the solution of steady-
state and time-dependent PDEs based on finite difference and
finite volume methods within the Berger-Oliger-Colella [6], [7]
adaptive mesh refinement formulation.

Any time-dependent PDE simulation code has the same
basic structure: initialize the mesh and solution, advance the
solution in time (time step loop), and shut down. For structured
grid frameworks, within each step of the time-advancement
loop, calculations are done on each box, often with some
communication and additional operations to make the solutions
consistent across all of the boxes.

III. CFD EXEMPLAR

In this work, we use a simple kernel representative of the
stencil calculations performed on a box in CFD computations



1 phi0 = phi1 = initial data
2 for (every box)
3 {
4 for (int dir = 0; dir != SpaceDim; ++dir)
5 {
6 for (int iC = 0; iC != nComp; ++iC)
7 {
8 for (every face in direction dir)
9 flux(face) = EvalFlux1(phi0);

10 }
11 velocity = flux[component dir+1];
12 for (int iC = 0; iC != nComp; ++iC)
13 {
14 for (every face in direction dir)
15 flux(face) = EvalFlux2(flux(face),
16 velocity);
17 for (every cell)
18 phi1(cell) +=
19 flux(cell + 1) - flux(cell);
20 }
21 }
22 }

Fig. 6. Pseudo-code for finite-volume kernel exemplar. iC is a loop over
components in U and SpaceDim = 3 is the dimension of the problem.
Line 4 is a loop over the directions of the cell faces. The for statements tinted
red on lines 8, 14, and 17 are nested loops over the spatial dimensions of the
box.

to study the balance between parallelism, data locality, and
re-computation in a node. The kernel is based on the finite
volume method and includes a calculation of the flux on the
faces of a cell and accumulation into the cell to update the
solution.

A. Exemplar Pseudo-code

Pseudo-code for the benchmark is in Figure 6. This code
fragment has a modular style since separate one-dimensional
functions can be written for EvalFlux1, EvalFlux2 and for
the accumulation described by lines 18–19. The modular style
makes it easy to test and the one-dimensional construction
allow for changing SpaceDim at compile time. Additionally,
it is highly parallel; at lines 8, 14, and 17, the granularity of
parallelism is a single face or cell within the box. Figure 7
illustrates the computation as it occurs for a two-dimensional
grid. All of the flux calculations in the X and Y directions,
Fx and Fy , are computed using neighboring cell values. Cell
values, or phi0 and phi1 in the pseudo-code, are indicated
with white circles. The cell values are computed using the
adjacent flux values.

However, there are two problems. First, the variable flux
is a temporary. The size of the temporary can be reduced from
covering the whole box, but only at the expense of parallelism
(e.g., columns of cells in the x-directions could be evaluated
without a temporary, but each column must be evaluated
serially). Second, phi1(cell) is touched SpaceDim times,
a problem that is difficult to overcome without introducing
redundant calculations, large temporaries, or severely inhibit-
ing parallelism. The difficulties arise because of the different
iteration spaces for computing Fx, Fy , and for accumulating
into cells (see Fig. 7).

x

y

Fx Fx Fx Fx Fx

Fx Fx Fx Fx Fx

Fx Fx Fx Fx Fx

Fx Fx Fx Fx Fx

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

First pass Second passFx Fy

Fig. 7. Baseline iteration schedule with nested loops and separate passes
for x-direction flux and y-direction flux and after each loop over fluxes in a
particular direction the impact of that flux is accumulated into adjacent cells.

B. Exemplar Formulation

In the following, a simplified representation of a flux kernel
is described; the variables and equations are not physically
correct. In three spatial dimensions, the solution in the cells
consists of cell average quantities of density, velocity, and
energy

〈φ〉i = 〈U〉i = [〈ρ〉 〈u〉 〈v〉 〈w〉 〈e〉]T
i
. (5)

The evaluation of the flux is performed in two parts. First,
in EvalFlux1, the average solution on the face must be
computed from the average solution in the cells [32].

〈φ〉i+ 1
2e

d =
7

12
(〈φ〉i + 〈φ〉i+ed)

− 1

12
(〈φ〉i+2ed + 〈φ〉i−ed) +O(∆x4) . (6)

In (6), ed is a unit vector in direction d, and i+ 1
2e

d is
therefore the high-side face in direction d from cell i. Next,
as part of EvalFlux2, the flux is computed as

∆x〈Fd〉i+ 1
2e

d = 〈φ〉i+ 1
2e

d

∣∣∣
d+1
〈φ〉i+ 1

2e
d , (7)

where |() is a vector subscript counting from 0. E.g., for d = 0,

∆x〈F 0〉i+ 1
2e

0 = 〈u〉i+ 1
2e

0 [〈ρ〉 〈u〉 〈v〉 〈w〉 〈e〉]T
i+ 1

2e
0 , (8)

Although simplified, the flux kernel provides a realistic ratio
of arithmetic intensity. It also presents two challenges: (1)
loops in the kernel have different centerings and cannot be
easily fused and (2) a specific component from EvalFlux1
is required for computing all components in EvalFlux2, thus
incurring non-trivial dependencies.

C. Exemplar Implementation Details

The baseline implementation of the exemplar illustrated
in Figure 6 is implemented using the Chombo. The current
parallel strategy in Chombo is to use MPI everywhere; each



core is assigned an MPI process. For load balancing purposes,
hundreds of boxes can be assigned to each process.

The data associated with a box is represented by an
FArrayBox, which contains a pointer to a float or double
data array in column-major ordering. In the exemplar, the
nested loops over the spatial dimensions of the box (red for
loops in Fig. 6), are all written in C++. Our experience is
that Fortran reliably and most easily yields the fasted code for
stencil operations. However, we can reproduce the performance
in C++, by caching pointer offsets for each cell in a stencil and
using these offsets along with pointer arithmetic in each “unit-
stride” column of cells in a box.

The data layout for U on a three-dimensional grid is
[x, y, z, c] where c is a component of U (see equation (5))
and Fortran ordering is assumed (x is unit stride). There are
pros and cons to this layout, but it works well for gradient
calculations. Nevertheless, for the flux kernels, it is somewhat
disadvantageous because the components of velocity are re-
quired to compute each component of flux, and the individual
components in a cell are very far apart in memory. The data
layout cannot be changed unless one wishes to repack all the
cell data for some segment of code.

The exemplar implementation is compiled for three di-
mensions and 64-bit floating point numbers. A single node
is used for the calculations with OpenMP used for parallel
calculations. The parallel granularity is tested for both boxes,
and z-slices within a box. The total number of cells per
solution is 5,0331,648 which may be divided into 12,288 boxes
of size 163, 1,536 boxes of size 323, 192 boxes of size 643,
or 24 boxes of size 1283. The number of cells in the exemplar
were selected to provide at least 1 box for each of 24 threads,
but real applications contain significantly larger problem sizes.

IV. INTER-LOOP PARALLELIZATION VARIANTS

The hypothesis is that the poor on node parallel scaling of
larger box sizes is due to a memory bandwidth bottleneck.
Reducing the traffic between memory and each thread in
the parallelization requires improving the data locality in the
computation and reducing the amount of temporary storage as
much as possible. The tradeoff is non-trivial because changing
the schedule for a computation for improved data locality and
minimal temporary storage often removes all possible paral-
lelization opportunities. There is a known tradeoff between
parallelism, data locality, and redundant computation.

The goal in this work is to investigate the parallelism, data
locality, and redundant computation tradeoff in a Chombo CFD
exemplar and using inter-loop schedules that have not been
attempted before in such a context due to the implementation
complexity involved. The shared memory parallel variants in
this study fall under the following broad categories:

• Series of loops in the original exemplar
• Shifted and fused loops
• Shifted, fused, and tiled with wavefront parallelism
• Overlapped tiles (aka communication avoiding)

In this section, we detail each of the above categories and
their impact on the parallelism, data locality, and temporary
data as well as how it interacts with other axes in the space of

TABLE I. A SUMMARY OF THE IMPLEMENTATIONS: N IS THE NUMBER
OF ELEMENTS IN A SINGLE DIMENSION (BOX SIZE IS N3), T IS THE

NUMBER OF ELEMENTS IN A SINGLE DIMENSION IN A SINGLE TILE, C IS
THE NUMBER OF COMPONENTS (5), P IS THE NUMBER OF THREADS.

Schedule Temporary Data
Series of Loops Flux:C(N + 1)3

Velocity:(N + 1)3

Loops shifted and fused Flux:2 + 2N + 2N2

Velocity:3(N + 1)3

Loops shifted, fused, tiled Flux: 2(3CN2)
Velocity: 3(N + 1)3

Shifted, fused, overlapping tiles Flux:PC(2 + 2T + 2T 2)
Velocity:PC(3(T + 1)3)

variants. Table I summarizes the temporary data size for each
category. Additionally, we describe how leveraging existing
code generation tools reduces the implementation complexity.

A. Original: Series of Loops

The original code corresponds to Figure 6. Figure 7 il-
lustrates the schedule for this category of variants for a two-
dimensional box. Execution of this schedule results in reading
the input data and writing the output data three times, once for
each dimension. Implementations in this category vary along
the following axes: (1) parallelization over boxes or within
boxes, and (2) the component loops at lines 6 and 12 outside
as they are shown or inside the loops over faces and cells.

Temporary Data. These schedules requires O((N + 1)3)
temporary data for holding flux values between operations and
O((N+1)3) for velocity data. Storage reuse occurs as the flux
arrays are first written to during both flux steps and first read
during the accumulation statement. In the “component loop on
the outside variant” no temporary storage is required for the
velocity data.

Temporal and Spatial Data Locality. The traversal order in
this schedule yields a high degree of spatial locality in the X-
direction. The spatial locality is lower for the Y and Z accesses
of the stencil. The temporal locality depends on the size of the
data and the size of the cache. For large problem sizes, it is
possible for the input data and temporary data to fall out of
cache before reuse, causing this schedule to have almost no
temporal data locality.

Parallelism. Each of the face and cell loops in isolation is
fully parallel. However, for small values of N (box size in each
dimension), there is not enough work to justify parallelization
within the box. Recall that each node has a number of boxes
assigned to it. The parallelization, when done over boxes, is
much more effective.

B. Shifted and Fused

The three loops within a box in the exemplar are not
candidates for simple loop fusion. This is due to the structure
being iterated over (faces versus cell centers) as well as stencil-
shaped data dependencies. To overcome these limitations,
the face loops can be shifted and then fused with the loop
over cells. The component loops complicate this more, but
Figure 8(a) illustrates the shift and fuse for a 2D box example
when the component loops are on the inside. The concept



x

y

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

P-1 Fx Fx Fx Fx Fx

P-2 Fx Fx Fx Fx Fx

P-3 Fx Fx Fx Fx Fx

P-4 Fx Fx Fx Fx Fx

(a) To improve data locality for the pseu-
docode in 6, one can shift the face loops
and fuse them with the cell loops. For par-
allelism the fused iterations can be executed
in wavefronts, where all of the iterations in a
wavefront can be executed concurrently.

x

y

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

P-1 Fx Fx Fx Fx Fx

P-2 Fx Fx Fx Fx Fx

P-3 Fx Fx Fx FxFx

P-4 Fx Fx Fx FxFx

(b) Wavefronts of blocked, or tiled, fused
iterations.

x

y

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fy

Fx Fx Fx Fx Fx

Fx Fx Fx Fx Fx

Fx Fx Fx Fx Fx

Fx Fx Fx Fx Fx

(c) Overlapped tiles can all be executed in
parallel. Flux computations on the surface of
tiles are computed by each tile that uses them.
This can be done with shifted and fused or the
original schedule.

Fig. 8. Variant data access patterns on a 2D structured grid. The fluxes, Fx and Fy are computed on cell faces. The final result, phi1, is stored on the cell
centers marked by

extends to the 3D boxes in the exemplar and component loops
on the outside.

Implementations in this category vary along the follow-
ing axes: (1) parallelization over boxes or within boxes, (2)
component loops on the outside or inside, and wavefront
parallelization at the per iteration granularity or not.

Temporary Data. The shifted and fused schedule requires
less temporary storage overall and different amounts for the
flux data in each direction. In the X-direction (innermost
loop), the schedule calculates fluxlo, fluxhi for each cell,
and then immediately uses them in the same iteration in the
accumulation. Therefore, in the X-direction only 2 scalars are
needed. In the Y-direction the fluxhi value used by cell (0,0,0)
will be used as the fluxlo value for cell (0,1,0). O(N + 1)
flux values must be saved for the y-direction. The Z-direction
requires one more dimension of data to be saved, essentially
an entire plane of data O(N+1). The velocity temporary data
required for this schedule remains O(3(n+ 1))3.

Temporal and Spatial Data Locality. The spatial locality
with respect to each operation in this schedule remains the
same as for the original schedule. The real difference is in
the temporal locality with respect to the flux data. Multiple
operations are performed for each face or cell during the same
iteration and so the temporal locality is greatly increased. In
the case of a perfect fuse it would be possible to read each
piece of data in only once (for the x-direction), however, this
fusion is not perfect and therefore some of the data still needs
to be read twice.

Parallelism. Due to the fusion, there are now data depen-
dencies between tiles. Parallelism can be partially recovered
by utilizing a wavefront traversal. The wavefront traversal has
the well-known problem that for the first and last wavefronts
of iterations there will not be enough tasks to occupy all of
the available cores. Additionally, wavefront parallelism at the
granularity of single fused iterations ruins spatial locality in

the X-direction.

C. Tiling with Wavefront Parallelism

This schedule involves running the set of tiles in a wave-
front pattern as seen in Figure 8(b). Implementations in this
category vary along the following axes: (1) parallelization over
boxes or within boxes, (2) component loops on the outside or
inside, and (3) tile sizes of 4, 8, 16, or 32.

Temporary Data. This execution schedule requires a co-
dimension flux cache. In the variant that maintains the com-
ponent loop as the outside loop, the flux cache for the exemplar
application is 3D. In the variant that moves the component loop
to the inside more space is required, a 4D cache, in order to
save multiple component values simultaneously.

Temporal and Spatial Data Locality. Using cube tiles
simultaneously reduces the spatial locality while increasing
the temporal locality. This is because the streamed accesses
in the X-direction are interrupted, however, the reuse distance
between data in the Y and Z-direction stencil accesses is
reduced.

Parallelism. The wavefront pattern suffers from the dis-
advantage that it lacks sufficient parallelism to occupy all of
the cores on a multi-core node during the initial and finishing
wavefronts.

D. Overlapped Tiles

It is possible to expand all of the tiles by one plane of
flux operations in each direction and remove all data depen-
dencies between tiles. This approach is shown in Figure 8(c).
Overlapped tiles have the disadvantage that some computation
is being repeated across tiles. However, there is a significant
increase in parallelism over wavefront tiles, and data locality
is maintained within each tile.



This approach is different than just maintaining the use of
smaller tiles during on-node calculations due to ghost cells in
a distributed parallelism model. The extra layer of cells com-
puted by the overlapped tiles do not result in duplicated data,
rather in data sharing. Therefore, the impact on performance
is significantly less.

This schedule involves running the set of tiles in a wave-
front pattern as seen in Figure 8(b). Implementations in this
category vary along the following axes: (1) parallelization over
boxes or within boxes, (2) series of loops schedule in each tile
or shifted and fused loops within each tile, (3) component
loops on the outside or inside, and (4) tile sizes of 4, 8, 16,
or 32.

Temporary Data. This scheduling method results in a
significant decrease in temporary data. Each thread is only
required to save a single tile of temporary data. Flux values
require only O((T + 1)3) bytes, where T is the number of
cells in one direction of the tiles.

Temporal and Spatial Data Locality. Spatial locality is not
heavily affected by this scheduling technique; however, due to
the reduction in working set size, temporal locality is greatly
improved. Depending on the tile size, it may be possible to
maintain the full working set in cache.

Parallelism. There are no data dependencies between tiles.
Therefore, the limitation on parallelism comes from the num-
ber of available cores rather than the schedule and storage
mapping.

E. Leveraging Code Generation Tools

There are a large variety of transformations possible and
some of the transformations are configurable. A total of 328
variants are possible, but many of those variants are not
practical. For example, tile sizes were only used for box sizes
that were strictly larger. Additionally, other variants were left
out because it was clear they would not perform as well. For
example, overlapped tiles did not use the component loops on
the inside because the untiled component loop on the inside
variants were slower than the component loop on the outside
variants.

Due to the large number of variants , we use a polyhedral
model based code generator, Omega+ [9] to automate the
generation of loop bounds. The schedules were implemented
by taking the original Chombo code and separating the com-
putation into three distinct concerns: What is being calculated,
When and with what parallelization is each iteration executed,
and Where are values stored in temporary arrays. The What
is specified with statement macros and an integer tuple set
defining the domain of iterations for each statement macro. The
Where is implemented with storage mapping macros that map
indexed values to storage locations. The code can appear single
assignment even though storage is being reused. The When can
be specified as a schedule mapping. We then manually place
an OpenMP parallel for pragma outside certain loops.

V. RELATED WORK

Expressing and optimizing structured, stencil computations
is an active area of research. To our knowledge none of the
previous optimizations for structured grids except those in

[50], [5], and [36] have investigated scheduling across loops
that share data but implement different stencils, which is the
typical pattern in CFD codes. In this section, we compare the
work in this paper to those most closely related and to other
research that optimizes stencil computations.

A. Optimizations for Stencil Computations

Previous approaches that most resembles the presented here
using inter-loop scheduling techniques for regular grids are the
hierarchical overlapped tiling work [50], stencil transformation
extensions for Chill [5], and the Halide project [36].

Zhou et al. [50] present a compiler algorithm for perform-
ing hierarchical overlapped tiling for a sequence of loops. Their
approach could be used to automate the schedules investigated
here. Their results on benchmarks show that overlapped tiling
and hierarchical overlapped tiling perform well. In comparison,
they experiment on a GPU, whereas our work focuses on the
multicore scalability issue. Additionally, we work with a series
of loops that model the computations performed by many
PDE application frameworks including all of the complexity
involved with handling multiple variables at each cell and face
in the grid.

Basu et al. [5] extend the program transformation scripting
tool Chill [29] with loop fusion, overlapped tiling, and a form
of wavefront computation within each overlapped tile for a
computation that includes a red-black Gauss-Seidel algorithm.
Our use of CodeGen+, which is part of Chill, indicates
that the set of loop transformations we study here could be
incorporated into Chill.

Halide [36] provides a domain-specific, functional pro-
gramming language to enable the specification of graphics
computation pipelines, which contain stencil computations.
The Halide compiler and autotuner determines the tradeoff
between data locality, parallelism, and redundant computation
that will result in the best performance for the given graphics
pipeline on the give architecture. However, the inter-loop
scheduling strategies that we present cannot be expressed in
the scheduling language provided in Halide. Specifically, in
Halide, it is only possible to shift and fuse two loops in one
dimension, but we are shifting and fusing in three dimensions.

Optimizations that tile across a time loop containing a
single stencil followed by parallelization are quite common.
These approaches fall under two main categories: tiling with
a wavefront parallelization or overlapped tiling.

The concept of tiling over time (or time skewing [47])
and then performing wavefront parallelization is similar to the
shift, fuse, and wavefront schedules we perform except we are
scheduling between different stencil loops instead of across
time steps over the same stencil. 3.5D tiling [34] performs a
blocked wavefront parallelism within a computation where the
same stencil is applied many times within an outer time loop.

Overlapped tiling for stencil computations appears as early
as 1997, when Bassetti et al. [4] introduced an optimization
they call sliding block temporal tiling and when Sawdey
and O’Keefe [40] developed a FORTRAN source-to-source
translation tool that introduced overlapped tiles through time
by creating a larger halo. The Cactus toolkit is an application
framework that supports distributed memory parallelization of



PDE applications and includes some capability for doing over-
lapped tiles of computation to avoid communication [1]. Many
other papers describe tools or experiments where overlapped
tiles were used in regular stencil codes to avoid excess com-
munication either between distributed processes or between
non-shared caches in shared memory threads [16], [37], [27],
[30], [21], [13], [33], [11], [10], [42], [25].

Avoiding redundant computation while avoiding the
pipeline startup of wavefront parallelization has also been
addressed in the diamond tiling work [2], [48]. Diamond tiling
is an approach that we plan to apply to the shifted and fused
schedules in the future.

Optimization in prior studies could be done in addition to
the loop optimizations we investigate here. Kamil et al. [28]
perform extensive auto tuning on a space of 4 levels of block-
ing for the spatial dimensions in the stencil and perform other
optimizations like SIMDization. The Mint compiler [46] uses
partial 3D blocking as described by Rivera and Tseng [38].

B. (Semi)-Automatic Parallelization

An auto parallelization approach [3], [18] can achieve good
performance portably and frees the programmer from having
to make fixed choices, but requires precise data dependence
analysis that is difficult to perform for code written with
libraries. Scripting transformation tools such as Chill [29],
Orio [23], POET [49], and Sequoia mappings [17] enable
performance programmers to specify transformations to apply
to loops. We could almost use one of these tools to realize
the schedules in this paper; however, we had to do the storage
mapping by hand and we had to modify the code to perform
overlapped tilling by hand.

Others have looked at the problem of determining the best
temporary storage mapping given a schedule or vice versa [45],
[14], [35], [41]. This is under the assumption that the schedule
and storage mapping are affine, which is not the case for
overlapped tile that need overlapped temporary storage.

VI. EXPERIMENTAL RESULTS

The comparative efficiencies of the schedules were tested
on two multi-core machines, described in detail below, that
have performance levels typical of nodes found on current
supercomputers. It is our goal to understand how node-level
parallelism can be employed to allow efficient computation
over increased box sizes above N = 16. As such, each schedule
was tested for block sizes of N = 16, 32, 64, and 128. To test
parallel scalability, each case was also executed over a range
of thread counts ranging from one up to the maximum number
of cores of the machine. We found the performance results for
box sizes of N = 32 and 64 to fall smoothly in between those of
N = 16 and 128 so we only report the data for the two extreme
cases. Our primary result is that several of the schedules allow
execution of the N = 128 sized boxes with an efficiency equal
to that of the N = 16 case, paving the road for the move to
larger box sizes. As tiling was a major building block of many
of the variants, we also tested all tiled implementations with
tile sizes of 4, 8, 16, and 32. We found that in general tile
sizes of 8 and 16 were the most efficient.

For the tiled wavefront and overlapping tiles schedules,
we tested two different means of parallelization. In the first

16 32 64 128
0

1

2

3

4

Box Size

E
xe

cu
tio

n
Ti

m
e

(s
)

Best Performance with Box Size

AMD Magny-Cours P≥Box
AMD Magny-Cours P<Box
Intel Ivy Bridge P≥Box
Intel Ivy Bridge P<Box

Fig. 9. Fastest performance over all configurations for each box size.

approach, we parallelized over tiles within each box. In the
second approach, we parallelized over boxes as ordinarily done
in Chombo but iterated over the tiles serially within each
box. Figure 9 shows the performance of the fastest schedules
when parallelized over boxes (denoted “P>=Box”) versus
parallelized over tiles (denoted “P<Box”). The parallelization
over boxes performs much better when the size of the boxes is
small, but the two approaches have similar performance when
the size of the box is large. The reason for this is simply that
small boxes have too few tiles available per box to occupy
the full number of threads. For example, a box of size N =
16, when implemented using tiles of size 16, only has one
thread worth of tiles available per box, making the computation
completely serial. As we are interested in the performance on
large size boxes and because the performance is good for both
approaches to parallelization in that case, we did not try to
combine the two strategies to enable greater parallelism for
small boxes.

A. Experimental Setup

Each 24-core node on a Cray XT6M machine is composed
of two AMD 12-core Magny Cours processors running at 1.90
GHz, configured with 32 GB of DDR3 RAM that deliver an
aggregate memory bandwidth of 85.3 GB/s, shared between
both sockets. Each core has a 64 KB of level 1 instruction
cache, 64KB of level 2 data cache, and 512 KB of level 2
cache. All twelve cores on a socket share a 12 MB of level 3
cache.

Atlantis is a 20-core machine composed of two 10-core
Intel Ivy Bridge E5-2670v2 chips running at a clock rate of
2.50 GHz. The system is configured with 128 GB of DDR3
RAM in a quad-channel configuration with a clock rate of
1600 MHz, giving 51.2 GB/s of bandwidth per socket or an
aggregate system bandwidth of 102.4 GB/s. Each core has a
32 KB of level 1 instruction cache, 32 KB of level 1 data
cache, and 256 KB level 2 cache. All cores on a socket share
25 MB of level 3 cache.

Each 16-core node on Cab uses two 8-core Intel Sandy
Bridge E5-2670 chips running at a clock rate of 2.6 GHz.



Each node has 32 GB of DDR3 RAM configured in the same
manner as Atlantis, giving the same per-socket and system
bandwidth. The cache characteristics are also the same except
that the level 3 cache is 20 MB in size.

In addition, a single-socket, 4-core Ivy Bridge desktop
system was used to gather hardware counter data to aid in
performance analysis of the implementations. The desktop
machine allowed direct measurement of memory bandwidth
data, which was not possible on the other machines due to
lack of administrator level access. The system is equipped
with an i5-3570K CPU running at 3.40 GHz and 16GB of
DDR3 RAM running at a clock rate of 1458 MHz in a dual
channel configuration, giving 21.0 GB/s of system bandwidth.
The CPU has a 32 KB level 1 instruction cache, a 32 KB
level 2 data cache, a 256 KB level 2 cache, and a 6MB level
3 cache, which is shared amongst all four cores. Bandwidth
usage was measured using the Intel VTune Amplifier XE 2013
performance profiler tool and the Intel Performance Counter
Monitor routines.

The test code was compiled on all machines using the GNU
C++ compiler with OpenMP enabled. The optimization level
was set to the -O3 level of optimizations, and loop unrolling
and optimizations for the native architecture of each machine
(-march=native command line parameter) were specifically
enabled.

B. Performance of the Schedules

1 2 4 8 16 24

0.5

1

2

4

8

16

Thread Count

E
xe

cu
tio

n
Ti

m
e

(s
)

Performance on 24-Core AMD Magny-Cours (N=128)
Baseline: P≥Box
Shift-Fuse: P≥Box
?Blocked WF-CLO-16: P<Box
?Shift-Fuse OT-8: P<Box
?Basic-Sched OT-8: P<Box
?Shift-Fuse OT-16: P≥Box
?Basic-Sched OT-16: P≥Box

Fig. 10. Performance of various schedules when N=128. A ? indicates the
variant with a tile size giving the fastest performance was chosen. Note the
good scalability of the wavefront schedule and the excellent scalability and
performance of the overlapped tile schedules.

Series of modular loops. The performance of the original
schedule is shown in Figures 2 through 4 for box sizes of N =
16 and N = 128 as the lines labeled “Baseline”. The parallelism
is over boxes so this case is essentially how Chombo code is
executed today, except using OpenMP to parallelize over boxes
instead of MPI. We can see that the scaling in the N = 16 case
is basically perfect, but the scaling for the N = 128 case is
terrible.

1 2 4 8 20 40

0.25

0.5

1

2

4

8

16

HT→
Thread Count

E
xe

cu
tio

n
Ti

m
e

(s
)

Performance on 20-Core Intel Ivy Bridge (N=128)
Baseline: P≥Box
Shift-Fuse: P≥Box
?Blocked WF-CLI-4: P<Box
?Shift-Fuse OT-8: P<Box
?Basic-Sched OT-16: P<Box
?Shift-Fuse OT-8: P≥Box
?Basic-Sched OT-16: P≥Box

Fig. 11. Performance of various schedules when N=128. A ? indicates the
variant with a tile size giving the fastest performance was chosen. Note the
good scalability of the wavefront schedule and the excellent scalability and
performance of the overlapped tile schedules.

1 2 4 8 12 16

0.25

0.5

1

2

4

8

Thread Count

E
xe

cu
tio

n
Ti

m
e

(s
)

Performance on 16-Core Intel Sandy Bridge (N=128)
Baseline: P≥Box
Shift-Fuse: P≥Box
?Blocked WF-CLI-16: P<Box
?Shift-Fuse OT-16: P<Box
?Basic-Sched OT-16: P<Box
?Shift-Fuse OT-8: P≥Box
?Basic-Sched OT-16: P≥Box

Fig. 12. Performance of various schedules when N=128. A ? indicates the
variant with a tile size giving the fastest performance was chosen. Note the
good scalability of the wavefront schedule and the excellent scalability and
performance of the overlapped tile schedules.

As discussed in Section IV, the amount of temporary data
that must be stored and loaded is high. When the box size
is N = 16, the data for the box, including temporaries, fits
into the last level cache for all the machines. Since most loads
and stores are absorbed by the cache, the memory bandwidth
required is modest, and there is sufficient system bandwidth
to allow scaling out to the full number of cores. As measured
by VTune, the single-thread bandwidth profile when run on
the Ivy Bridge desktop, while not constant throughout the
entire execution, is composed of stretches of mostly sustained
bandwidth up to 4.9 GB/s. When using the maximum of four



threads for the system, the bandwidth increases to 14.5 GB/s
which is well below the maximum system bandwidth. (Note
that the bandwidth usage is not uniform, so the total cost at
four cores is not necessarily four times the maximum cost of
one core). The other machines have a larger number of cores
but a correspondingly higher system bandwidth. We see from
the excellent scalability shown in Figures 2 through 4 that the
bandwidth has not been saturated on those machines for this
schedule.

When N = 128, the working set can no longer be held
within the last level of cache, and the bandwidth usage
increases. On the Ivy Bridge desktop, the kernel exhibited
bandwidth usage up to 18.3 GB/s for a single thread. The
system bandwidth of 21.0 GB/s became highly contended
when using two or more threads and the performance ceased
to improve at all beyond two threads. For the HPC-class
machines, we see in Figures 2 through 4 that their scalability
falters after only a few threads, assumedly because their
bandwidth has become contended as well.

We conclude that a major key to improving scalability
on large boxes, compared to the base case of N = 16, is to
reduce the bandwidth usage of the schedules. In the highest
performing schedules, this is achieved through a combination
of loop fusion to reduce the number of temporaries and tiling
to allow more memory accesses to be absorbed by the cache.

Shifted and Fused Loop. Shifting and fusing loops signif-
icantly lowers the number of temporaries that must be stored
and subsequently loaded. This has the effect of lowering the
bandwidth required, as a greater proportion of the cycles are
spent performing computations rather than loads and stores. On
the Ivy Bridge desktop, for the N = 16 case, the single-thread
bandwidth is lowered from 4.9 GB/s in the un-fused case to 3.9
GB/s. The change is small due to the good caching behavior
of the baseline at that size. However, on the N = 128 case, the
bandwidth usage reduces to time stretches requiring 9.4 GB/s
interleaved with time intervals of similar length requiring less
than 6 GB/s, which is a significant reduction in bandwidth cost
compared to the 18.3 GB/s for the baseline case. This allows
the schedule to scale to a larger number of threads before there
is significant contention for memory bandwidth.

In Figures 10 through 12, the shifted and fused kernel when
parallelized over boxes is denoted “Shift-Fuse: P>=Box”. The
graphs show that the scalability of that case is greatly improved
on the HPC machines compared to the baseline. For both
machines, the schedule exhibits nearly perfect scaling up to
8 threads, a significant increase compared to the non-fused
case. However, we also see that shifting and fusing alone is
inadequate to achieve ideal scalability over all cores of the
machine.

Wavefront Tiling. All of the wavefront schedules were
implemented with shifting and fusing as well as tiling. In the
figures, this is denoted as “Blocked Wavefront”. As a result,
the bandwidth cost of the schedules is low especially at tile
sizes of 16 or smaller, where the data still fits into last level
cache. Therefore, on boxes of size N = 128, the wavefront
implementations, except those with tiles of size 32, generally
had good scaling out to the full number of cores for the system.
In Figures 10 through 12, the wavefront variants that performed
best on each particular machine are denoted “Blocked WF-

CLO-16: P<Box” and “Blocked WF-CLI-4: P<Box” respec-
tively. Recall that “P<Box” stands for “parallelized over tiles”.
We see that the scaling for those schedules is good but that
the lines for the wavefront schedules are offset above the other
lines on the graph. In other words, the schedules scaled well
but still had a high time cost compared to the other schedules.
This is because the wavefront schedules provide only limited
parallelism. During the first several wavefronts, there are not
enough tiles available to keep every core busy, resulting in
an initial warm-up period with low parallelism (see Figure
8(a)). This results in a higher overall time cost compared with
schedules that can make full use of their threads throughout the
computation, as in the overlapped tiling case below. Overall,
wavefront schedules were not competitive.

Overlapped Tiling. Overlapped tiling schedules exhibited
the best performance of all the schedules for computing large
boxes. They combine the low bandwidth cost of tiling with
maximum parallelism, as each thread can be assigned to a
completely independent tile. Figures 10 through 12 show the
fastest performing overlapped tile schedules when using simple
tiling and also when adding shift-and-fuse in two cases each:
when parallelized over boxes and when parallelized over tiles.
The overlapped tiles schedules are labeled “OT”, and are the
last four schedules in the legend of each graph. The shifted-
and-fuse variant is labeled “Shift-Fuse” and the simple tiled
version is written “Basic-Sched”. The number after the “OT-
” is the tile size in each case. Recall that “P>=Box” means
parallelized over boxes while “P<Box” denotes parallelization
over tiles. Overall, we see these schedules exhibit excellent
scalability and greatly improved performance over the baseline
case.

Figures 2 through 4 show that the efficiency of the fastest
performing overlapped tiling schedules, when applied to boxes
of size N = 128, is comparable to that of the baseline schedule
when applied to boxes of size N = 16. The optimization greatly
outperforms the baseline schedule applied to the N = 128 box
size. This is the primary result of this paper: demonstration
that a sufficiently well-implemented schedule can achieve the
performance efficiency enjoyed by computing over small boxes
while avoiding their high ghost-cell exchange penalty.

VII. CONCLUSIONS

Using larger box sizes in PDE codes would enable reducing
ghost cell overhead, but straight-forward parallelization over
boxes or over cells within boxes using large box sizes results
in poor parallel scaling on multicore architectures due to
memory bandwidth bottlenecks. To solve this problem, we
study around 30 different inter-loop scheduling strategies for a
CFD benchmark. Our results show that, for an AMD Magny-
Cours (Cray XT6m node), an Ivy Bridge node, and a Sandy
Bridge node, scheduling variants that optimize for data locality
and minimize temporary storage can provide for large box
sizes 1283 the same performance and/or parallel scalability
as for smaller box sizes 163. In some cases, the performance
of the small box sizes improve as well. This result suggests
that it would be beneficial to determine ways to automate the
automatic implementation, selection, and tuning of such inter-
loop program optimizations for PDE application frameworks.



VIII. ACKNOWLEDGMENTS

We would like to thank Brian Van Straalen for discussions
about this work and answering questions about Chombo. Sup-
port for this work was provided through the Resilient Extreme-
Scale Solvers program funded by the U.S. Department of
Energy, Office of Science, Advanced Scientific Computing
Research. This work was also supported by the Department of
Energy CACHE Institute grant DE-SC04030 and DOE grant
DE-SC0003956. This research utilized the CSU ISTeC Cray
HPC System supported by NSF Grant CNS-0923386. This
work was performed under the auspices of the U.S. Department
of Energy (DOE) by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344.

REFERENCES

[1] G. Allen, T. Dramlitsch, I. Foster, T. Goodale, N. Karonis, M. Ripeanu,
E. Seidel, and B. Toonen. Cactus-g toolkit: Supporting efficient
execution in heterogeneous distributed computing environments. In In
Proceedings of 4th Globus Retreat, 2000.

[2] V. Bandishti, I. Pananilath, and U. Bondhugula. Tiling stencil com-
putations to maximize parallelism. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis (SC), 2012.

[3] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Automatic
program parallelization. Proceedings of the IEEE, 81(2):211–243, 1993.

[4] F. Bassetti, K. Davis, and D. Quinlan. Optimizing transformations of
stencil operations for parallel object-oriented scientific frameworks on
cache-based architectures. Lecture Notes in Computer Science, 1505,
1998.

[5] P. Basu, S. W. Williams, B. V. Straalen, A. Venkat, L. Oliker, and
M. Hall. Compiler generation and autotuning of communication-
avoiding operators for geometric multigrid. In IEEE Conference on
High Performance Computing, December 18–21 2013.

[6] M. Berger and P. Colella. Local adaptive mesh refinement for shock
hydrodynamics. J. Comput. Phys., 82(1):64–84, 1989.

[7] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic
partial differential equations. J. Comput. Phys., 53(3):484–512, 1984.

[8] C. Chen. Polyhedra scanning revisited. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2012.

[9] C. Chen, M. Hall, and A. Venkat. Omega+.
http://ctop.cs.utah.edu/ctop/?page id=21, August 15 2012.

[10] M. Christen, O. Schenk, and H. Burkhart. Patus: A code generation
and autotuning framework for parallel iterative stencil computations on
modern microarchitectures. In Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2011.

[11] M. Christen, O. Schenk, E. Neufeld, M. Paulides, and H. Burkhart.
Manycore Stencil Computations in Hyperthermia Applications. In
J. Dongarra, D. Bader, and J. Kurzak, editors, Scientific Computing
with Multicore and Accelerators, pages 255–277. CRC Press, 2010.

[12] P. Colella, D. T. Graves, N. Keen, T. J. Ligocki, D. F. Martin,
P. McCorquodale, D. Modiano, P. Schwartz, T. Sternberg, , and B. V.
Straalen. Chombo software package for amr applications - design
document. Technical report, Lawrence Berkeley National Laboratory,
2009.

[13] J. Cong and Y. Zou. Fpga-based hardware acceleration of lithographic
aerial image simulation. ACM Trans. Reconfigurable Technol. Syst.,
2(3):17:1–17:29, Sept. 2009.

[14] A. Darte, R. Schreiber, and G. Villard. Lattice-based memory allocation.
IEEE Transactions on Computers, 54(10):1242–1257, 2005.

[15] R. Deiterding. Detonation structure simulation with amroc. In L. Yang,
O. Rana, B. Martino, and J. Dongarra, editors, High Performance
Computing and Communications, volume 3726 of Lecture Notes in
Computer Science, pages 916–927. Springer Berlin Heidelberg, 2005.

[16] C. Ding and Y. He. A ghost cell expansion method for reducing
communications in solving pde problems. In Proceedings of the
ACM/IEEE Conference on Supercomputing, Supercomputing ’01, pages
50–50, New York, NY, USA, 2001. ACM.

[17] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R. Horn, L. Leem,
J. Y. Park, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan. Sequoia:
Programming the memory hierarchy. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, 2006.

[18] P. Feautrier. Automatic parallelization in the polytope model. In The
Data Parallel Programming Model, pages 79–103, 1996.

[19] C. for Computational Sciences and L. B. N. L. Engineering. Boxlib,
Sept. 2012.

[20] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, and
J. Shalf. The Cactus framework and toolkit: Design and applications.
In Vector and Parallel Processing – VECPAR’2002, 5th International
Conference, Lecture Notes in Computer Science, Berlin, 2003. Springer.

[21] J. Guo, G. Bikshandi, B. B. Fraguela, M. J. Garzaran, and D. Padua.
Programming with tiles. In Proceedings of the 13th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 111–122, New York, NY, USA, 2008. ACM.

[22] S. M. J. Guzik, P. McCorquodale, and P. Colella. A freestream-
preserving high-order finite-volume method for mapped grids with
adaptive-mesh refinement. AIAA 2012-0574, 50th AIAA Aerospace
Sciences Meeting, 2012.

[23] A. Hartono, B. Norris, and S. Ponnuswamy. Annotation-based empirical
performance tuning using Orio. In 23rd IEEE International Parallel &
Distributed Processing Symposium (IPDPS) Rome, Italy, May 2009.

[24] W. Henshaw. Overture: An object-oriented toolkit for solving partial
differential equations in complex geometry, Mar. 2014.

[25] J. Holewinski, L. Pouchet, and P. Sadayappan. High-performance code
generation for stencil computations on gpu architectures. In Proceedings
of the 26th ACM international conference on Supercomputing, pages
311–320. ACM, 2012.

[26] R. D. Hornung and S. R. Kohn. Managing application complexity in
the samrai object-oriented framework. Concurrency and Computation:
Practice and Experienc, 14:347–368, 2002.

[27] Q. Huang and J. Xue. Code tiling for improving the cache performance
of pde solvers. In In Proceedings of the International Conference on
Parallel Processing. ACM, pages 615–625, 2003.

[28] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning
framework for parallel multicore stencil computations. In Parallel
Distributed Processing (IPDPS), 2010 IEEE International Symposium
on, pages 1–12, 2010.

[29] M. Khan, P. Basu, G. Rudy, M. Hall, C. Chen, and J. Chame. A script-
based autotuning compiler system to generate high-performance cuda
code. ACM Trans. Archit. Code Optim., 9(4):31:1–31:25, Jan. 2013.

[30] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan. Effective automatic parallelization
of stencil computations. In Proceedings of Programming Languages
Design and Implementation (PLDI), volume 42, pages 235–244, New
York, NY, USA, 2007. ACM.

[31] J. Luitjens, B. Worthen, M. Berzins, and T. Henderson. Scalable parallel
AMR for the Uintah multiphysics code. In D. A. Bader, editor, Petascale
Computing Algorithms and Applications. Chapman and Hall/CRC, Boca
Raton, FL, 2008.

[32] P. McCorquodale and P. Colella. A high-order finite-volume method for
conservation laws on locally refined grids. Comm. App. Math. Comput.
Sci., 6(1):1–25, 2011.

[33] J. Meng and K. Skadron. Performance modeling and automatic ghost
zone optimization for iterative stencil loops on gpus. In Proceedings of
the 23rd international conference on Supercomputing, ICS ’09, pages
256–265, New York, NY, USA, 2009. ACM.

[34] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey. 3.5-d
blocking optimization for stencil computations on modern cpus and
gpus. In Proceedings of the ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’10, pages 1–13, Washington, DC, USA, 2010. IEEE Computer Society.

[35] F. Quilleré and S. Rajopadhye. Optimizing memory usage in the
polyhedral model. ACM Transactions on Programming Languages and
Systems, 22(5):773–815, 2000.



[36] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe. Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines.
In Proceedings of the 34th ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’13, pages 519–530, New
York, NY, USA, 2013. ACM.

[37] F. Rastello and T. Dauxois. Efficient tiling for an ode discrete
integration program: Redundant tasks instead of trapezoidal shaped-
tiles. In Proceedings of the 16th International Parallel and Distributed
Processing Symposium, IPDPS ’02, pages 138–, Washington, DC, USA,
2002. IEEE Computer Society.

[38] G. Rivera and C.-W. Tseng. Tiling optimizations for 3d scientific
computations. In Supercomputing, 2000.

[39] G. Roth, J. Mellor-Crummey, K. Kennedy, and R. G. Brickner. Com-
piling stencils in high performance fortran. In Proceedings of the
ACM/IEEE Conference on Supercomputing (CDROM), pages 1–20,
New York, NY, USA, 1997. ACM Press.

[40] A. Sawdey and M. T. O’Keefe. Program analysis of overlap area
usage in self-similar parallel programs. In Proceedings of the 10th
International Workshop on Languages and Compilers for Parallel
Computing, LCPC ’97, pages 79–93, London, UK, UK, 1998. Springer-
Verlag.

[41] M. M. Strout, L. Carter, J. Ferrante, and B. Simon. Schedule-
independent storage mapping for loops. In Proceedings of the Eighth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 24–33, San Jose, California,
October 3–7, 1998.

[42] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson. The pochoir stencil compiler. In Proceedings of the 23rd
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
’11, pages 117–128, New York, NY, USA, 2011. ACM.

[43] T. C. D. Team. Clawpack-5, 2013.
[44] R. U. The Applied Software Systems Laboratory. Grace: Grid adaptive

computational engine, Mar. 2012.
[45] W. Thies, F. Vivien, and S. Amarasinghe. A step towards unifying

schedule and storage optimization. ACM Transactions on Programming
Languages and Systems, 29(6):34, 2007.

[46] D. Unat, X. Cai, and S. B. Baden. Mint: realizing cuda performance in
3d stencil methods with annotated c. In Proceedings of the international
conference on Supercomputing, ICS ’11, pages 214–224, New York,
NY, USA, 2011. ACM.

[47] D. Wonnacott. Using time skewing to eliminate idle time due to
memory bandwidth and network limitations. In Proceedings of the
14th International Symposium on Parallel and Distributed Processing,
IPDPS ’00, Washington, DC, USA, 2000. IEEE Computer Society.

[48] D. G. Wonnacott and M. M. Strout. On the scalability of loop tiling
techniques. In Proceedings of the 3rd International Workshop on
Polyhedral Compilation Techniques (IMPACT), January 2013.

[49] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan. Poet:
Parameterized optimizations for empirical tuning. In Proceedings of
the Parallel and Distributed Processing Symposium, 2007.

[50] X. Zhou, J.-P. Giacalone, M. J. Garzarán, R. H. Kuhn, Y. Ni, and
D. Padua. Hierarchical overlapped tiling. In Proceedings of the Tenth
International Symposium on Code Generation and Optimization, CGO
’12, pages 207–218, New York, NY, USA, 2012. ACM.


